

G-BOT-Gesture Controlled Robot

Oindrilla Ghosh Dastidar Parth Ketankumar Modi

Department of Electrical and Computer Engineering Department of Electrical and Computer Engineering

The Ohio State University The Ohio State University

Columbus, United States Columbus, United States

ghoshdastidar.4@osu.edu modi.99@osu.edu

Abstract — In this project, a wheeled robot was made that
can be controlled by an android device through our hand
gestures, and which can stop automatically when an obstacle
is on its way. Wi-Fi has been used as the communication
protocol between the robot and the android device. The main
aim was to make an embedded system which has all
components from sensors, microcontrollers, actuators, and a
communication protocol as well as uses the android device as
it is currently the most utilized device and is accessible to all
users.

I. INTRODUCTION

The wheeled robot designed in this project can be

controlled by users using their android devices. The

sensors which are embedded within an android device, for

example a gyroscope can be used to capture the gestures

made by the user. This property of the android device was

utilized to make this robot easily controllable by an

android phone. Our bigger idea for this project is the

application areas this robot can be used in. It can be used

in the exploration of mines, exploration of forests, and

archaeological sites where humans cannot tread. Thus, this

robot would enable the users to operate a robot with their

android devices and maneuver them just like a car

steering.

 Previous work shows that these kinds of projects have

been done before in which android is used to control a

wheeled robot. The novelty of this project is nevertheless

the fact that the Wi-Fi communication between the

android device and the robot has not been explored before.

Given, the applications the robot is to be used for Wi-Fi

has been chosen to give it a large range so that the user can

operate it from a large distance. Thus, in this paper, the

use of android sensors, Wi-Fi communication, robot

motion, obstacle detection, gesture control, and graphic

user interface on an android device has been brought

together on the same page. The approach used to control

the robot has been human gestures as well as obstacle

detection. The objective of the project is that the user can

maneuver the robot through gestures from very large

distances even without seeing the robot and can control it

through the GUI(Graphical User Interface) on the android

device.

 In this report, the work done has been divided into ten

sections. In section I. a brief introduction is given. The

system block diagram has been given in section II. In

section III, the overall system architecture has been

defined. The technical approach used has been explained

in section IV. The details of the methodology have been

described in section V. The details of the user application

developed has been stated in section VI. In section VII, the

experiments have been stated. In section IX the details of the

bugs that can appear have been described.

II. BLOCK DIAGRAM

The block diagram of the system can be seen in Figure 1.

III. SYSTEM ARCHITECTURE

The different hardware components used in the system can

be seen in Figure 2. The overall system consists of two main

components namely the android device, and the robot. The

communications between the android device and the robot

take place using Wi-Fi. The robot is made up of a wheeled

chassis and the power and logic circuitry which contains an

Figure 1: Block Diagram of the system

Figure 2: Hardware components on the system

ESP 32, power management IC, motor driver IC, stepper

motors and an ultrasound sensor as shown in figure. ESP

32 module is used as the microcontroller for the robot and

is programmed using Arduino IDE. ESP32 functions as a

Wi-Fi server and creates an access point to let clients

connect to it in-order to receive and send data. An android

application is created using Android Studio which

provides the user with an interface to control the robot.

The primary function of this application is to capture and

classify the users intended gesture using the gyroscope

present on the device and send this classified gesture to the

ESP32 using Wi-Fi. The android device running the

above-mentioned application functions as a Wi-Fi client

that connects to a Wi-Fi server in-order to send and receive

data. On top of Wi-Fi the system incorporates the

WebSockets protocol to transfer data. The OkHTTP

library for android and Java applications is used in android

studio to achieve data transfer using WebSockets on an

android device. Whereas on the ESP32 this is achieved

using the WebSocketServer library.

IV. TECHNICAL APPROACH

The android application created using android studio

has four primary functions. Initially, the application

requires the user calibrate and threshold gyroscope values.

This enables the application to run on a wide range of

android devices that contain gyroscope sensors with

varying sensitivity. Secondly, the application captures

different gestures depending on the change in gyroscope

values due to the motion endured by the device. The

application then classifies the identified gestures into

decimal values indicating different types of motion that

the robot can perform. Lastly, the application sends these

decimal values to the ESP32 over Wi-Fi using

WebSockets. The ESP32 comes with an integrated Wi-Fi

module which makes the data transfer using Wi-Fi on the

ESP32 relatively easy. The ESP32 is programmed using

Arduino IDE and is used to control the robot motion

depending on the data it receives from the android

application. The robot chassis also houses an ultrasound

sensor which is used to constantly monitor the area in front

of the robot and detect objects that the robot can collide

into. The ultrasound sensor sends the distance at which it

detects the nearest object to the ESP32. This distance

value is transferred back to the android device as feedback

for the user to better operate the robot. As soon as the

distance value received by the ESP32 from the ultrasound

sensor is lower than the set threshold, the ESP32 stops the

robot. At this point no forward motion of the robot is

allowed as this indicates the presence of an object in front

of the robot at a dangerously short distance. The robot can

only move in the reverse direction until it is at a safe

distance from the detected object after which normal

operation is initiated again.

V. METHODOLOGY

To implement this project following hardware and

software components were used:

A. Hardware Components

 ESP32 module

 AMS1117 (Power Management IC)

 L298N (Motor Driver IC)

 Stepper Motors

 HC-SR04 (Ultrasonic distance Sensor)

B. Software Components

 OkHTTP Library for Android and Java

 WebSocketServer Library for ESP8266 module

 WiFi library for ESP32 module

1. ESP32

ESP32 is a 32-bit microcontroller developed by Espressif

Systems. The ESP32 houses a 2.4 GHz Wi-Fi module and a

Bluetooth/Bluetooth LE module. ESP32 embeds two Xtensa

32-bit Lx6 microprocessors that have adjustable clock

frequencies ranging from 80MHz to 240MHz. The ESP32

have a good physical range with a +19.5dBm output power.

ESP32 supports legacy Bluetooth connections in addition to

supporting Bluetooth low energy profiles including L2CAP,

GAP, GATT, and SMP. ESP32 has a sleep current of 5uA, this

makes it suitable for low-power applications. ESP32 also

includes peripherals like Ethernet, High speed SPI, UART,

I2S and I2C [1]. ESP 32 comes with two 12-bit SAR ADCs that

can support 18 analog enabled pins in the ESP32 [2]. In this

project an ESP32 is used as the microcontroller that is

responsible to control the motion of the robot, detect objects

in front of the vehicle and avoid collisions depending on the

presence of objects. The resolution of the ADC is set to 10-bit

for this project which provides it with 1024 divisions to

control the magnitude of velocity of the robot with optimal

precision. Figure 3 shows the ESP32 WROOM module.

2. AMS1117 (Power Management IC)

Figure 4 shows the AMS1117 power module with 3.3V

and 5V outputs. The AMS1117 is used to provide up to 1A

output current and can operate down to a differential of 1V

Figure 3: ESP 32 WROOM [3]

input-to-output.AMS1117 modules are easy to use and are

protected against short circuit and thermal overloads. If

the temperature of the junction becomes more than 165°

C, then the thermal circuitry shuts down the regulator. The

AMS1117 is pin compatible with the older adjustable

regulators [10].

3. L298N (Motor Driver IC)

The drawing of an L298N can be seen in Figure 5.

The L298N is a dual H-Bridge motor driver which allows

speed and direction control of two DC motors at the same

time. The module can be used to drive DC motors with

voltages from 5V up to 35V, the peak current should be

less than 2A [4].

4. DC Motors

DC motor used in our application is operated in the

continuous mode. The speed of the motor can be changed

by varying the voltage supplied. There are several ways to

vary the voltage to the motor. The method used in our

project is the PWM (Pulse Width Modulation) technique.

The analog pin from the ESP 32 controller sends PWM

output of 8 bit which can range from minimum value of 0

and maximum value of 255. Thus changing the output

from 0 to 255 the speed of the motor can be controlled.

These motors are rated at 3-6V DC and 200-400mA current

during normal operation. But during a stall, in the case of

heavy weight on the chassis or due to increased friction it can

draw a stall current upto 1.5A. [9]. Figure 6 shows a common

DC motor that can be used for the robot operation as in this

project.

5. HC-SR04 (Ultrasonic distance Sensor)

Figure 7 shows the image and pinout of the HC-SR04

ultrasonic distance sensor. The HC-SR04 ultrasonic distance

sensor is used to provide 2cm to 400cm of non-contact

measurement functionality. The ranging accuracy of this

sensor can be as good as 3mm. The sensor module houses an

ultrasound transmitter, receiver, and control unit. The sensor

module functions by transmitting eight 40 kHz signals. Then

the module waits for these signals to be received by the

receiver. If the receiver receives these signals,

then the time taken for the signals to return is sent as the output

to the microcontroller [5]. From this time value the distance of

the object can be extracted using the following formula:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑅𝑒𝑡𝑢𝑟𝑛 𝑡𝑖𝑚𝑒 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑)/2 (1)

This distance value is obtained and monitored by the

ESP32 and change the motion of the robot accordingly.

6. OkHTTP Library for Android and Java

OkHTTP is a third-party library developed by Square. It

is used to send and receive HTTP-based network requests. It

is built on top of the Okio library. It is also used as the

underlying library for Retrofit. OkHTTP v3.5 includes support

for bidirectional web sockets. To use web sockets with

OkHTTP the URL should be prefixed with ws:// or wss:// [6].

7. WebSocketServer Library for ESP8266 module

The WebSocket library for ESP8266 is a third-party

library developed by Morris Singer. The library lets the

ESP8266 to become a web socket server and provides it with

functions like getData() and sendData() which are used to send

and receive string data. The library was developed for

ESP8266 and therefore some minor changes are to be made to

Figure 4: AMS1117 Power Module

Figure 5: L298N motor driver module [4]

Figure 6: DC Motor [9]

Figure 7: HC-SR04 Ultrasonic Distance Sensor [5]

this library to make it work for the ESP32. These changes

are discussed later [7].

8. WiFi library for ESP32 module

The Wi-Fi library enables local and internet network

connection. This library helps in instantiating servers,

clients and send/receive UDP packets through Wi-Fi. This

library also allows using the ESP32 as an access point.

This allows the ESP32 to create a wireless local area

network that is secure from the outside world. This

connection facilitates data transfer without the need of

being connected to the internet [8].

VI. IMPLEMENTATION

A brief idea about the implementation of the system is

shown in Figure 8.

A. Implementation on the robot side

1. Creating an access point using ESP32

As discussed earlier, the WiFi library for Arduino is

used to create an access point and to enable a WiFi Server

using the ESP32. To create an access point the

WiFi.softAP() function is used in Arduino IDE. This

function requires two parameters namely ssid and

password, which can be randomly set by the user as per

their convenience. In addition to this we require the IP

address of the ESP32 which will act as a URL to which

the android device will connect to. The IP address can be

found by using the WiFi.softAPIP() function. Finally, the

server.begin() function is used to enable the server. The

logic to create an access point using ESP32 can be seen in

Pseudo Code 2.

2. Creating a WebSocketServer

The Web socket server is created using the ESP8266-

WebSocket-Master library created by Morris singer. This

library was developed for ESP8266 therefore to use this

library for ESP32 some changes to the library are required to

be made. The MD5.c file in the library source code contains

three functions namely MD5Init(), MD5Update(), and

MD5Final(). To use this library for ESP32 the names of these

functions should be changed to MD5InitXXX(),

MD5UpdateXXX(), and MD5FinalXXX() respectively. After

this the library should work fine for the ESP32. As the server

has been created using the WiFi library, the WebSocket library

is used to connect the server with WebSocket clients. To do

this we first create an instance of the WebSocketServer. The

server constantly checks if any client is available. If a client is

available, then it is a client instance is created and the available

client is assigned to this instance. After this the WebSocket

library connects to this client and completes the handshake

after which data transfer can take place using getData() and

sendData(). The web sockets in this project are configured to

transfer only string data therefore all the data to be transferred

is first converted to string datatype and then as per requirement

converted back to integer datatype. Pseudo Code 3 shows the

logic to create a WebSocket server.

3. Motor Control using data received from android device

and object detected by the ultrasound sensor

The data received from the android device using the web

socket is in the form of decimal number in the range of 0 to 22

depending on the gesture from the user. The motion of the

robot depends on the number received. The above-mentioned

range of numbers is categorized to a specific motion

performed by the robot.

Figure 8: Depiction of the implementation of the system

Pseudo Code 2: Code to create an access point

using ESP32

Pseudo Code 3: Code to create a WebSocket Server

using the WebSocket Library

Pseudo Code 1: Code to control motor depending on the

integer motion values

The motion of the robot also depends on the object

detection by the ultrasound sensor. The threshold for the

object distance set by us is 40 cm. This threshold was

decided after experimenting different values to know the

distance required the robot to come to a complete halt. If

there is an object at less than 40 cm in front of the robot,

then motions involving reverse motion are only allowed.

The speed of the robot is controlled by setting PWM duty

cycle values of the motor driver to ‘300’ for slow motion

and ‘350’ for fast motion.

Two PWM channels of the ESP32 are used

simultaneously to independently vary the values for the

two motors, this enables us to program different kinds of

motions for the robot. Two IO pins are used to control each

motor of the robot. Depending on the type of motion one

of the IO pins is set to “HIGH” which passes the PWM

duty cycle value set to one of the terminals of the motor.

The other pin is set to ”LOW” which passes a ‘0’ duty

cycle value essentially grounding the second terminal.

This creates a voltage difference between the two

terminals due to which the motor starts rotating.

To stop the rotating motor or keep it from rotating

both the terminals of the motor are set to either “HIGH”

or “LOW”, because of this there is no voltage difference

between the terminals and the motor does not rotate. The

motor control logic can be understood by Pseudo Code 1.

B. Implementation on Android Side

1. Setting up the android environment

To use the Wi-Fi module of the android device

internet permission must be provided. To add the internet

permission to the android application the following line

should be added to the android manifest file:

<uses-permission

android:name="android.permission.INTER

NET" />

Next, to use the OkHTTP library in the android

application the following line must be added to the

dependencies section of the gradle build file of the android

application:

implementation

'com.squareup.okhttp3:okhttp:4.9.3'

Finally, in-order to connect to the web socket server

created by the ESP32, the android device must be connected

to the access point created by the ESP32. This can be seen in

Figure 9.

2. Calibrating the thresholds depending on the android

device

The threshold values of the gyroscope before calibration

can be seen in Figure 10. The user needs to calibrate the

gyroscope thresholds. This feature of the application is used to

enable this application to be used on all the different android

devices that use gyroscopes of different sensitivities. The

gyroscope in an android device provides the angular velocity

of the motion that it detects. This value of angular velocity has

a unit of rad/s. Looking at the unit to convert the value of

angular velocity to amount of rotation experienced by the

device the value of angular velocity is multiplied by the

amount of time taken for that angular velocity to take place.

 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 = 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗
 𝑡𝑖𝑚𝑒. . . (2)

 Moreover, the gyroscope does not provide a single value

of angular velocity for the entire gesture motion, but the entire

gesture motion is divided into many small motion detections.

The problem caused due to this is that the rotation value

provided by using this angular velocity in equation 2 provides

a value of rotation for all the small motions detected by the

gyroscope, this value of rotation is not what we are looking

for. Therefore, to solve this problem and get the rotation value

for the entire gesture motion the rotation values of all the small

Figure 9: Connecting to G-BOT access point on

android device

Figure 10: Threshold values before calibration

Pseudo Code 4: Finding rotation values from angular

velocity provided by the gyroscope

motions are cumulated into a sum variable. This variable

provides the rotation value for the entire gesture motion.

Hence, now in the sum variable we have the rotation value

for the complete gesture by the user along one axis of

rotation. This procedure is then repeated for the second

axis of motion in consideration.

 Therefore, we have two values of rotation for the

user’s gestures along both the axes of rotation in

consideration. The user needs to perform a couple of

dummy gestures to calibrate the gyroscope thresholds.

These dummy gestures are a 90° forward motion and a 90°

left motion. As the thresholds for the backward motion are

equal in magnitude to the forward motion threshold, the

backward motion threshold can be calculated by negating

the forward threshold value. The relation between the left

and right threshold values is same as the forward and

backward motions therefore the same logic can be

achieved to get the right motion threshold values from the

left threshold values. Figure 11 shows the threshold values

of the gyroscope after calibration is completed. Pseudo

Code 4 shows the logic to get rotation values from angular

velocity values acquired from the gyroscope.

3. Identifying the gestures and displaying object

distance received from ESP32

The logic to identify the gestures in the android

application is like calibrating the gyroscope thresholds,

the only difference being that this time the rotation values

along both the axis is checked against the threshold set by

the calibration and the gesture corresponding to that

threshold value is identified as the intended gesture by the

user. This project recognizes 8 different gestures depicted

by different integer values. Depending on the detected

gesture the corresponding integer value is assigned to that

gesture

 The object distance data from the ESP32 is received in the

form of string. This string is then directly assigned to the

textbox designated to display the distance data as textbox in

android accept only string data. Figure 13 shows the screen

seen by the user in the application when they are operating the

robot.

4. Categorizing the identified gesture in different motions

With the help of the 8 recognized gestures in this project 23

different types of motions that the robot can perform using

these 8 gestures are derived. These motions are assigned a pre-

defined integer value in the range of 0-22. More information

on all the different motions and the integer assigned to that

motion is provided in Table 1.

C. Robot electrical connections

The electrical connections for the robot are shown in

Figure 12. In the figure U105 is ESP32 module, U106 is the

L298N motor drive, U101 and U102 designate the two DC

motors, U107 is the AMS1117 power management module

and the U106 is the HC-SR04 ultrasonic distance sensor

module. The AMS1117 power management module can

produce both 5V and 3.3V. The 3.3V output is used to power

the ESP32 and the HC-SR04, while the 5V is used to power

the L298N motor driver and the DC motors.

 The echo pin on the HC-SR04 is connected to the IO22 pin

of the ESP32, while its trigger pin is connected to IO23 of the

ESP32.

 The L298N is has 6 input pins from the ESP32. Two

enable pins for each motor and 4 analog pins to provide the

PWM duty cycle values to the two motors. The analog pins

used for the first motor are IO27 and IO14. The enable pin for

motor 1 is connected to IO25 on the ESP32. For the second

motor the analog pins used on the ESP32 are IO12 and IO15.

Figure 11: Threshold values after calibration

Figure 13: Screen showing object distance and motion

performed by the robot

Figure 12: Schematic Diagram of the circuit

Table 1: Recognized motion for the robot and the integer

number assigned to each motion

Integer

Value Assigned

Rotation Axis of Gyroscope Corresponding Robot Motion

0 Y = 0 , Z = 0 Stop

1 Y = clockwise threshold 1, Z = 0 Forward

2 Y = clockwise threshold 2, Z = 0 Forward Fast

3 Y = anti-clockwise threshold 2, Z = 0 Backward

4 Y = anti-clockwise threshold 2, Z = 0 Backward fast

5 Y = 0 , Z = anti-clockwise threshold 1 Left

6 Y = 0, Z = anti-clockwise threshold 2 Big Left

7 Y = 0 , Z = clockwise threshold 1 Right

8 Y = 0, Z = clockwise threshold 2 Big Right

9 Y = clockwise threshold 1, Z = anti-clockwise threshold 1 Forward motion while making a left turn

10 Y = clockwise threshold 2, Z = anti-clockwise threshold 2 Fast Forward motion while making a big left turn

11 Y = anti-clockwise threshold 1, Z = anti-clockwise threshold

1

Backward motion while making a left turn

12 Y = anti-clockwise threshold 2, Z = anti-clockwise threshold

2

Fast Backward motion while making a big left

turn

13 Y = anti-clockwise threshold 1, Z = clockwise threshold 1 Backward motion while making a right turn

14 Y = anti-clockwise threshold 2, Z = clockwise threshold 2 Fast Backward motion while making a big right

turn

15 Y = clockwise threshold 1, Z = clockwise threshold 1 Forward motion while making a right turn

16 Y = clockwise threshold 1, Z = clockwise threshold 1 Fast Forward motion while making a big right

turn

17 Y = clockwise threshold 1, Z = anti-clockwise threshold 2 Forward motion while making a big left turn

18 Y = anti-clockwise threshold 1, Z = anti-clockwise threshold

2

Backward motion while making a big left turn

19 Y = anti-clockwise threshold 2, Z = anti-clockwise threshold

1

Fast Backward motion while making a left turn

20 Y = clockwise threshold 2, Z = anti-clockwise threshold 1 Fast Forward motion while making a left turn

21 Y = clockwise threshold 1, Z = clockwise threshold 2 Forward motion while making a big right turn

22 Y = anti-clockwise threshold 1, Z = clockwise threshold 2 Backward motion while making a big right turn

The enable pin for the second motor is connected to the

IO26 on the ESP32.

Finally, the OUTA1 pin of the L298N should be

connected to the Vin+ pin of first motor and the OUTA2

pin should be connected to the Vin- pin of the first motor.

The same convention should be followed for the second

motor. The first motor and the second motor can be

selected by the user as per their convenience. But as it is

difficult to identify OUTA1 and OUTA2 pins on the

L298N, the motors should be tested after the connection is

made and if the motors rotate opposite to what is expected

then the connections should be interchanged.

VII. USING THE APPLICATION

A. Steps to use the Android Application

1. Install the application on an android device using

the source files provided

2. Power the robot through a power source that can

provide at least 1A current

3. Wait till the robot access point is available to

connect on the android device

4. Connect to the robot access point (You will be

required to enter the password if you are

connecting for the first time. The default SSID

for the robot is G-BOT and the default password

is 123456789. This can be changed in the

Arduino code)

5. Open the android application by the name

Team_9_Project_Calibration

6. Click the calibration button on the start screen

7. Now you will see the calibration activity on the

screen

8. First, rotate the phone 90° forward as if doing a

forward gesture and hold for a second until a

value appears on in front of the forward threshold

and rotate back to the starting position

9. If step 8 was successful, then rotate the device

90° left, again hold for a second until a value

appears in front of the sideways threshold

10. If step 9 is successful, then the thresholds are now

calibrated, and you can go back to the start screen

11. Now, click on the start button and start operating

the robot

12. Once in the start activity you can see the object

distance, straight and forward

13. On rotating the device by 45° forward you can

see the forward change from 0 to 1 and the robot

moving forward

14. If step 13 worked, then come back to the starting

position and rotate left by 45° and you will see

straight turn to left and 1 appear in front of it and

the robot moves left

15. You can follow the same procedure for reverse

motion and right motion by rotating the device

backward and right respectively

16. Once all the primary motions are performed

successfully, you can refer to Table 1 for more

motions that you can try out

VIII. EXPERIMENTS
Following experiment had to be implemented to find the

object detection threshold:

 Experiment 1: To find out the minimum threshold

for object detection

Setup: The assembled chassis is connected to power; the

android application is installed on an android device. The

android device is connected to the G-BOT access point using

Wi-Fi. The G-BOT is operated in fast forward operation mode

and moved towards the object setup by us for this experiment.

A random threshold value is initially set. The experiment is

repeated by increasing or decreasing the threshold value

depending on the success or failure of the previous threshold

value.

Result: When the value of threshold is set to 40 cm. The robot

comes to a halt with still a safe distance away from the object

even when operated in Fast Forward motion.

Analysis: By repeating the above experiment for a few times,

it was noticed from the threshold value and the distance

remaining after the vehicle completely stopped that while

being operated in the Fast Forward operation mode the robot

took around 20 cm distance to come to a complete stop. This

shows that the stopping distance of the robot is 20 cm.

Therefore the threshold was set to 40 cm which is double the

stopping distance which makes it safe to operate as well as the

threshold is not very large to affect the performance of the

robot.

IX. POTENTIAL BUGS FOUND

While operating the robot a couple of bugs were found:

1. Inaccurate object distance values: While operating the

robot it was found that the object distance provided by the

HC-SR04 varied very rapidly and by a huge margin. This

sometimes happened if the object was very close to robot.

This bug can be solved by replacing the ultrasound sensor

by a more accurate sensor like an ultraviolet distance

sensor or a LIDAR.

2. Very fast gesture by the user: If the user made a very fast

gesture the application sometimes loses its calibration as

it is not able to register the fast motion. The reason of this

is that the fast motion takes place in a very small period

of time which results in accurate value of rotation degree.

To solve this bug the logic for gesture recognition must

be tweaked so that it can exclude the fast gesture motions.

X. CONCLUSIONS

It was greatly intriguing and exciting to take up this project

and solve the challenges that came in the way. The

applications of this robot can be in varied places like in mines

for exploration, in forests as well as in-arena gaming

applications. Thus, further improvements can be made to the

design to make it more robust as well as user friendly.

In the future, multiple ultrasound sensors can be used to

give a better understanding of the environment. A single

ultrasound sensor has a very limited range. Thus, multiple

ultrasound sensors can be used to bring into consideration

the full range of the local environment of the robot. In the

future, a camera can be used to used instead of ultrasound

sensors. Ultrasound sensors are not always reliable and

can give varying readings based on the position of the

obstacle. Thus, a camera image could be sent to the user

and the user can decide what action to take by looking at

the GUI of the android device. As mentioned, it can be

used to explore areas that cannot be tread by humans

therefore in such areas even voice control can be

integrated if the user is unable to use gesture control for

maneuvering the robot. Also, in our demonstration, we

had used an adaptor as the batteries were not able to

provide enough ampere hours to drive the motors during

stall conditions, thus, in the future LiPo batteries can be

used to drive this robot as well as make it portable.

XI. REFERENCES

[1] “Analog to Digital Converter - ESP32 - — ESP-IDF

Programming Guide v4.2 documentation,”

docs.espressif.com.

https://docs.espressif.com/projects/esp-

idf/en/v4.2/esp32/api-

reference/peripherals/adc.html#:~:text=The%20ESP

32%20integrates%20two%2012 (accessed May 03,

2022).

[2] “Modules | Espressif Systems,” www.espressif.com.

https://www.espressif.com/en/products/modules

[3] “ESP32 IoT WiFi BLE Module with Integrated

USB,” store.ncd.io.

https://store.ncd.io/product/esp32-iot-wifi-ble-

module-with-integrated-usb/ (accessed May 03, 2022)

[4] “Arduino DC Motor Control Tutorial - L298N | PWM |

H-Bridge - HowToMechatronics,” HowToMechatronics,

Feb. 08, 2019.

https://howtomechatronics.com/tutorials/arduino/arduino

-dc-motor-control-tutorial-l298n-pwm-h-bridge/

[5] L. Reese, “The working principle, applications and

limitations of ultrasonic sensors,”

Microcontrollertips.com, 2019.

https://www.microcontrollertips.com/principle-

applications-limitations-ultrasonic-sensors-faq/

[6] “Using OkHttp | CodePath Android Cliffnotes,”

 guides.codepath.com.

https://guides.codepath.com/android/Using-OkHttp

(accessed May 03, 2022)

[7] morrissinger, “morrissinger/ESP8266-Websocket,”

GitHub, Apr. 27, 2016.

https://github.com/morrissinger/ESP8266-Websocket

[8] “WiFi - Arduino Reference,” www.arduino.cc.

https://www.arduino.cc/reference/en/libraries/wifi/

(accessed May 03, 2022)

[9] “ESP32 with DC Motor - Control Speed and Direction |

Random Nerd Tutorials,” May 17, 2018.

https://randomnerdtutorials.com/esp32-dc-motor-l298n-

motor-driver-control-speed-direction/

[10] “datasheet AMS1117,” www.digchip.com.

https://www.digchip.com/datasheets/parts/datasheet/015/

AMS1117-pdf.php (accessed May 03, 2022).

